This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 20-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rereb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 3 | reim0 | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · 0 ) ) |
| 5 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 ∈ ℝ → ( i · ( ℑ ‘ 𝐴 ) ) = 0 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( i · ( ℑ ‘ 𝐴 ) ) = 0 ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + 0 ) ) |
| 9 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 11 | 10 | addridd | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + 0 ) = ( ℜ ‘ 𝐴 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) + 0 ) = ( ℜ ‘ 𝐴 ) ) |
| 13 | 2 8 12 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
| 14 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 𝐴 ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) | |
| 15 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 𝐴 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 16 | 14 15 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 17 | 13 16 | impbida | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) |