This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relrelss | ⊢ ( ( Rel 𝐴 ∧ Rel dom 𝐴 ) ↔ 𝐴 ⊆ ( ( V × V ) × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | ⊢ ( Rel dom 𝐴 ↔ dom 𝐴 ⊆ ( V × V ) ) | |
| 2 | 1 | anbi2i | ⊢ ( ( Rel 𝐴 ∧ Rel dom 𝐴 ) ↔ ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) ) |
| 3 | relssdmrn | ⊢ ( Rel 𝐴 → 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ) | |
| 4 | ssv | ⊢ ran 𝐴 ⊆ V | |
| 5 | xpss12 | ⊢ ( ( dom 𝐴 ⊆ ( V × V ) ∧ ran 𝐴 ⊆ V ) → ( dom 𝐴 × ran 𝐴 ) ⊆ ( ( V × V ) × V ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( dom 𝐴 ⊆ ( V × V ) → ( dom 𝐴 × ran 𝐴 ) ⊆ ( ( V × V ) × V ) ) |
| 7 | 3 6 | sylan9ss | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) → 𝐴 ⊆ ( ( V × V ) × V ) ) |
| 8 | xpss | ⊢ ( ( V × V ) × V ) ⊆ ( V × V ) | |
| 9 | sstr | ⊢ ( ( 𝐴 ⊆ ( ( V × V ) × V ) ∧ ( ( V × V ) × V ) ⊆ ( V × V ) ) → 𝐴 ⊆ ( V × V ) ) | |
| 10 | 8 9 | mpan2 | ⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → 𝐴 ⊆ ( V × V ) ) |
| 11 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → Rel 𝐴 ) |
| 13 | dmss | ⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → dom 𝐴 ⊆ dom ( ( V × V ) × V ) ) | |
| 14 | vn0 | ⊢ V ≠ ∅ | |
| 15 | dmxp | ⊢ ( V ≠ ∅ → dom ( ( V × V ) × V ) = ( V × V ) ) | |
| 16 | 14 15 | ax-mp | ⊢ dom ( ( V × V ) × V ) = ( V × V ) |
| 17 | 13 16 | sseqtrdi | ⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → dom 𝐴 ⊆ ( V × V ) ) |
| 18 | 12 17 | jca | ⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) ) |
| 19 | 7 18 | impbii | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) ↔ 𝐴 ⊆ ( ( V × V ) × V ) ) |
| 20 | 2 19 | bitri | ⊢ ( ( Rel 𝐴 ∧ Rel dom 𝐴 ) ↔ 𝐴 ⊆ ( ( V × V ) × V ) ) |