This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relrelss | |- ( ( Rel A /\ Rel dom A ) <-> A C_ ( ( _V X. _V ) X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | |- ( Rel dom A <-> dom A C_ ( _V X. _V ) ) |
|
| 2 | 1 | anbi2i | |- ( ( Rel A /\ Rel dom A ) <-> ( Rel A /\ dom A C_ ( _V X. _V ) ) ) |
| 3 | relssdmrn | |- ( Rel A -> A C_ ( dom A X. ran A ) ) |
|
| 4 | ssv | |- ran A C_ _V |
|
| 5 | xpss12 | |- ( ( dom A C_ ( _V X. _V ) /\ ran A C_ _V ) -> ( dom A X. ran A ) C_ ( ( _V X. _V ) X. _V ) ) |
|
| 6 | 4 5 | mpan2 | |- ( dom A C_ ( _V X. _V ) -> ( dom A X. ran A ) C_ ( ( _V X. _V ) X. _V ) ) |
| 7 | 3 6 | sylan9ss | |- ( ( Rel A /\ dom A C_ ( _V X. _V ) ) -> A C_ ( ( _V X. _V ) X. _V ) ) |
| 8 | xpss | |- ( ( _V X. _V ) X. _V ) C_ ( _V X. _V ) |
|
| 9 | sstr | |- ( ( A C_ ( ( _V X. _V ) X. _V ) /\ ( ( _V X. _V ) X. _V ) C_ ( _V X. _V ) ) -> A C_ ( _V X. _V ) ) |
|
| 10 | 8 9 | mpan2 | |- ( A C_ ( ( _V X. _V ) X. _V ) -> A C_ ( _V X. _V ) ) |
| 11 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 12 | 10 11 | sylibr | |- ( A C_ ( ( _V X. _V ) X. _V ) -> Rel A ) |
| 13 | dmss | |- ( A C_ ( ( _V X. _V ) X. _V ) -> dom A C_ dom ( ( _V X. _V ) X. _V ) ) |
|
| 14 | vn0 | |- _V =/= (/) |
|
| 15 | dmxp | |- ( _V =/= (/) -> dom ( ( _V X. _V ) X. _V ) = ( _V X. _V ) ) |
|
| 16 | 14 15 | ax-mp | |- dom ( ( _V X. _V ) X. _V ) = ( _V X. _V ) |
| 17 | 13 16 | sseqtrdi | |- ( A C_ ( ( _V X. _V ) X. _V ) -> dom A C_ ( _V X. _V ) ) |
| 18 | 12 17 | jca | |- ( A C_ ( ( _V X. _V ) X. _V ) -> ( Rel A /\ dom A C_ ( _V X. _V ) ) ) |
| 19 | 7 18 | impbii | |- ( ( Rel A /\ dom A C_ ( _V X. _V ) ) <-> A C_ ( ( _V X. _V ) X. _V ) ) |
| 20 | 2 19 | bitri | |- ( ( Rel A /\ Rel dom A ) <-> A C_ ( ( _V X. _V ) X. _V ) ) |