This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unielrel | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∪ 𝐴 ∈ ∪ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrel | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
| 2 | simpr | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 3 4 | uniopel | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ∪ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑅 ) |
| 6 | 5 | a1i | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ∪ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑅 ) ) |
| 7 | eleq1 | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝐴 ∈ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) ) | |
| 8 | unieq | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∪ 𝐴 = ∪ 〈 𝑥 , 𝑦 〉 ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( ∪ 𝐴 ∈ ∪ 𝑅 ↔ ∪ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑅 ) ) |
| 10 | 6 7 9 | 3imtr4d | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅 ) ) |
| 11 | 10 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅 ) ) |
| 12 | 1 2 11 | sylc | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∪ 𝐴 ∈ ∪ 𝑅 ) |