This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rectbntr0 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex | ⊢ ℕ ∈ V | |
| 2 | 1 | canth2 | ⊢ ℕ ≺ 𝒫 ℕ |
| 3 | domnsym | ⊢ ( 𝒫 ℕ ≼ ℕ → ¬ ℕ ≺ 𝒫 ℕ ) | |
| 4 | 2 3 | mt2 | ⊢ ¬ 𝒫 ℕ ≼ ℕ |
| 5 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 6 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 7 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 8 | 7 | ntropn | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ⊆ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ∈ ( topGen ‘ ran (,) ) ) |
| 9 | 5 6 8 | sylancr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ∈ ( topGen ‘ ran (,) ) ) |
| 10 | opnreen | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ∈ ( topGen ‘ ran (,) ) ∧ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≠ ∅ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≈ 𝒫 ℕ ) | |
| 11 | 10 | ex | ⊢ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ∈ ( topGen ‘ ran (,) ) → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≠ ∅ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≈ 𝒫 ℕ ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≠ ∅ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≈ 𝒫 ℕ ) ) |
| 13 | reex | ⊢ ℝ ∈ V | |
| 14 | 13 | ssex | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
| 15 | 7 | ntrss2 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ⊆ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 16 | 5 15 | mpan | ⊢ ( 𝐴 ⊆ ℝ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 17 | ssdomg | ⊢ ( 𝐴 ∈ V → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ⊆ 𝐴 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ 𝐴 ) ) | |
| 18 | 14 16 17 | sylc | ⊢ ( 𝐴 ⊆ ℝ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ 𝐴 ) |
| 19 | domtr | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ 𝐴 ∧ 𝐴 ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ ℕ ) | |
| 20 | 18 19 | sylan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ ℕ ) |
| 21 | ensym | ⊢ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≈ 𝒫 ℕ → 𝒫 ℕ ≈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ) | |
| 22 | endomtr | ⊢ ( ( 𝒫 ℕ ≈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ∧ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ ℕ ) → 𝒫 ℕ ≼ ℕ ) | |
| 23 | 22 | expcom | ⊢ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≼ ℕ → ( 𝒫 ℕ ≈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) → 𝒫 ℕ ≼ ℕ ) ) |
| 24 | 20 21 23 | syl2im | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≈ 𝒫 ℕ → 𝒫 ℕ ≼ ℕ ) ) |
| 25 | 12 24 | syld | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) ≠ ∅ → 𝒫 ℕ ≼ ℕ ) ) |
| 26 | 25 | necon1bd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ¬ 𝒫 ℕ ≼ ℕ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) = ∅ ) ) |
| 27 | 4 26 | mpi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝐴 ) = ∅ ) |