This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recp1lt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 6 | 1 5 | breqtrd | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 1 + 𝐴 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 < ( 1 + 𝐴 ) ) |
| 8 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 + 𝐴 ) ∈ ℝ ) | |
| 11 | 9 10 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℝ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 + 𝐴 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 + 𝐴 ) ∈ ℂ ) |
| 14 | 0lt1 | ⊢ 0 < 1 | |
| 15 | addgtge0 | ⊢ ( ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 < 1 ∧ 0 ≤ 𝐴 ) ) → 0 < ( 1 + 𝐴 ) ) | |
| 16 | 14 15 | mpanr1 | ⊢ ( ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 0 ≤ 𝐴 ) → 0 < ( 1 + 𝐴 ) ) |
| 17 | 9 16 | mpanl1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 < ( 1 + 𝐴 ) ) |
| 18 | 17 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 + 𝐴 ) ≠ 0 ) |
| 19 | 8 13 18 | divcan1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) = 𝐴 ) |
| 20 | 11 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 21 | 20 | mullidd | ⊢ ( 𝐴 ∈ ℝ → ( 1 · ( 1 + 𝐴 ) ) = ( 1 + 𝐴 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 · ( 1 + 𝐴 ) ) = ( 1 + 𝐴 ) ) |
| 23 | 7 19 22 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) |
| 24 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 25 | 24 12 18 | redivcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 / ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 26 | ltmul1 | ⊢ ( ( ( 𝐴 / ( 1 + 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 1 + 𝐴 ) ∈ ℝ ∧ 0 < ( 1 + 𝐴 ) ) ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ↔ ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) ) | |
| 27 | 9 26 | mp3an2 | ⊢ ( ( ( 𝐴 / ( 1 + 𝐴 ) ) ∈ ℝ ∧ ( ( 1 + 𝐴 ) ∈ ℝ ∧ 0 < ( 1 + 𝐴 ) ) ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ↔ ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) ) |
| 28 | 25 12 17 27 | syl12anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ↔ ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) ) |
| 29 | 23 28 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ) |