This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recgt1i | |- ( ( A e. RR /\ 1 < A ) -> ( 0 < ( 1 / A ) /\ ( 1 / A ) < 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 | |- 0 < 1 |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
|
| 5 | 2 3 4 | mp3an12 | |- ( A e. RR -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
| 6 | 1 5 | mpani | |- ( A e. RR -> ( 1 < A -> 0 < A ) ) |
| 7 | 6 | imdistani | |- ( ( A e. RR /\ 1 < A ) -> ( A e. RR /\ 0 < A ) ) |
| 8 | recgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ 1 < A ) -> 0 < ( 1 / A ) ) |
| 10 | recgt1 | |- ( ( A e. RR /\ 0 < A ) -> ( 1 < A <-> ( 1 / A ) < 1 ) ) |
|
| 11 | 10 | biimpa | |- ( ( ( A e. RR /\ 0 < A ) /\ 1 < A ) -> ( 1 / A ) < 1 ) |
| 12 | 7 11 | sylancom | |- ( ( A e. RR /\ 1 < A ) -> ( 1 / A ) < 1 ) |
| 13 | 9 12 | jca | |- ( ( A e. RR /\ 1 < A ) -> ( 0 < ( 1 / A ) /\ ( 1 / A ) < 1 ) ) |