This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recextlem2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) → ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝐵 = 0 → ( i · 𝐵 ) = ( i · 0 ) ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | 2 | mul01i | ⊢ ( i · 0 ) = 0 |
| 4 | 1 3 | eqtrdi | ⊢ ( 𝐵 = 0 → ( i · 𝐵 ) = 0 ) |
| 5 | oveq12 | ⊢ ( ( 𝐴 = 0 ∧ ( i · 𝐵 ) = 0 ) → ( 𝐴 + ( i · 𝐵 ) ) = ( 0 + 0 ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 + ( i · 𝐵 ) ) = ( 0 + 0 ) ) |
| 7 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 8 | 6 7 | eqtrdi | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 + ( i · 𝐵 ) ) = 0 ) |
| 9 | 8 | necon3ai | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 10 | neorian | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) |
| 12 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) | |
| 13 | 12 | anidms | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 14 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 · 𝐵 ) ∈ ℝ ) | |
| 15 | 14 | anidms | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 𝐵 ) ∈ ℝ ) |
| 16 | 13 15 | anim12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ ( 𝐵 · 𝐵 ) ∈ ℝ ) ) |
| 17 | msqgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) | |
| 18 | msqge0 | ⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 · 𝐵 ) ) | |
| 19 | 17 18 | anim12i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐴 ) ∧ 0 ≤ ( 𝐵 · 𝐵 ) ) ) |
| 20 | 19 | an32s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 0 < ( 𝐴 · 𝐴 ) ∧ 0 ≤ ( 𝐵 · 𝐵 ) ) ) |
| 21 | addgtge0 | ⊢ ( ( ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ ( 𝐵 · 𝐵 ) ∈ ℝ ) ∧ ( 0 < ( 𝐴 · 𝐴 ) ∧ 0 ≤ ( 𝐵 · 𝐵 ) ) ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) | |
| 22 | 16 20 21 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) |
| 23 | msqge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) | |
| 24 | msqgt0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 0 < ( 𝐵 · 𝐵 ) ) | |
| 25 | 23 24 | anim12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 0 ≤ ( 𝐴 · 𝐴 ) ∧ 0 < ( 𝐵 · 𝐵 ) ) ) |
| 26 | 25 | anassrs | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≠ 0 ) → ( 0 ≤ ( 𝐴 · 𝐴 ) ∧ 0 < ( 𝐵 · 𝐵 ) ) ) |
| 27 | addgegt0 | ⊢ ( ( ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ ( 𝐵 · 𝐵 ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐴 ) ∧ 0 < ( 𝐵 · 𝐵 ) ) ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) | |
| 28 | 16 26 27 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≠ 0 ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) |
| 29 | 22 28 | jaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) |
| 30 | 11 29 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) |
| 31 | 30 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) → 0 < ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ) |
| 32 | 31 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) → ( ( 𝐴 · 𝐴 ) + ( 𝐵 · 𝐵 ) ) ≠ 0 ) |