This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recextlem2 | |- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> ( ( A x. A ) + ( B x. B ) ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( B = 0 -> ( _i x. B ) = ( _i x. 0 ) ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | 2 | mul01i | |- ( _i x. 0 ) = 0 |
| 4 | 1 3 | eqtrdi | |- ( B = 0 -> ( _i x. B ) = 0 ) |
| 5 | oveq12 | |- ( ( A = 0 /\ ( _i x. B ) = 0 ) -> ( A + ( _i x. B ) ) = ( 0 + 0 ) ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A = 0 /\ B = 0 ) -> ( A + ( _i x. B ) ) = ( 0 + 0 ) ) |
| 7 | 00id | |- ( 0 + 0 ) = 0 |
|
| 8 | 6 7 | eqtrdi | |- ( ( A = 0 /\ B = 0 ) -> ( A + ( _i x. B ) ) = 0 ) |
| 9 | 8 | necon3ai | |- ( ( A + ( _i x. B ) ) =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
| 10 | neorian | |- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( A + ( _i x. B ) ) =/= 0 -> ( A =/= 0 \/ B =/= 0 ) ) |
| 12 | remulcl | |- ( ( A e. RR /\ A e. RR ) -> ( A x. A ) e. RR ) |
|
| 13 | 12 | anidms | |- ( A e. RR -> ( A x. A ) e. RR ) |
| 14 | remulcl | |- ( ( B e. RR /\ B e. RR ) -> ( B x. B ) e. RR ) |
|
| 15 | 14 | anidms | |- ( B e. RR -> ( B x. B ) e. RR ) |
| 16 | 13 15 | anim12i | |- ( ( A e. RR /\ B e. RR ) -> ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) ) |
| 17 | msqgt0 | |- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |
|
| 18 | msqge0 | |- ( B e. RR -> 0 <_ ( B x. B ) ) |
|
| 19 | 17 18 | anim12i | |- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) |
| 20 | 19 | an32s | |- ( ( ( A e. RR /\ B e. RR ) /\ A =/= 0 ) -> ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) |
| 21 | addgtge0 | |- ( ( ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) /\ ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
|
| 22 | 16 20 21 | syl2an2r | |- ( ( ( A e. RR /\ B e. RR ) /\ A =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 23 | msqge0 | |- ( A e. RR -> 0 <_ ( A x. A ) ) |
|
| 24 | msqgt0 | |- ( ( B e. RR /\ B =/= 0 ) -> 0 < ( B x. B ) ) |
|
| 25 | 23 24 | anim12i | |- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) |
| 26 | 25 | anassrs | |- ( ( ( A e. RR /\ B e. RR ) /\ B =/= 0 ) -> ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) |
| 27 | addgegt0 | |- ( ( ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) /\ ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
|
| 28 | 16 26 27 | syl2an2r | |- ( ( ( A e. RR /\ B e. RR ) /\ B =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 29 | 22 28 | jaodan | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 30 | 11 29 | sylan2 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A + ( _i x. B ) ) =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 31 | 30 | 3impa | |- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 32 | 31 | gt0ne0d | |- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> ( ( A x. A ) + ( B x. B ) ) =/= 0 ) |