This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20. (Contributed by NM, 6-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | msqgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 2 | 0red | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 3 | 1 2 | lttri2d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
| 4 | 3 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
| 5 | mullt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ) → 0 < ( 𝐴 · 𝐴 ) ) | |
| 6 | 5 | anidms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
| 7 | mulgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → 0 < ( 𝐴 · 𝐴 ) ) | |
| 8 | 7 | anidms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 · 𝐴 ) ) |
| 9 | 6 8 | jaodan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) → 0 < ( 𝐴 · 𝐴 ) ) |
| 10 | 4 9 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |