This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgsucg | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim | ⊢ Lim dom rec ( 𝐹 , 𝐴 ) | |
| 2 | limsuc | ⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ↔ suc 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ↔ suc 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| 5 | rdgvalg | ⊢ ( 𝑦 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ 𝑦 ) ) ) | |
| 6 | rdgseg | ⊢ ( 𝑦 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ↾ 𝑦 ) ∈ V ) | |
| 7 | rdgfun | ⊢ Fun rec ( 𝐹 , 𝐴 ) | |
| 8 | funfn | ⊢ ( Fun rec ( 𝐹 , 𝐴 ) ↔ rec ( 𝐹 , 𝐴 ) Fn dom rec ( 𝐹 , 𝐴 ) ) | |
| 9 | 7 8 | mpbi | ⊢ rec ( 𝐹 , 𝐴 ) Fn dom rec ( 𝐹 , 𝐴 ) |
| 10 | limord | ⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → Ord dom rec ( 𝐹 , 𝐴 ) ) | |
| 11 | 1 10 | ax-mp | ⊢ Ord dom rec ( 𝐹 , 𝐴 ) |
| 12 | 4 5 6 9 11 | tz7.44-2 | ⊢ ( suc 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |
| 13 | 3 12 | sylbi | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |