This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a union. Part of Theorem 15.17(iv) of Monk1 p. 112. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ranksn.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankuni2 | ⊢ ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ranksn.1 | ⊢ 𝐴 ∈ V | |
| 2 | unir1 | ⊢ ∪ ( 𝑅1 “ On ) = V | |
| 3 | 1 2 | eleqtrri | ⊢ 𝐴 ∈ ∪ ( 𝑅1 “ On ) |
| 4 | rankuni2b | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |