This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsucmin | ⊢ ( 𝐴 ∈ On → suc 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 2 | ordelsuc | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝑥 ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) |
| 4 | 3 | rabbidva | ⊢ ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } = { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } ) |
| 5 | 4 | inteqd | ⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } = ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } ) |
| 6 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 7 | intmin | ⊢ ( suc 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } = suc 𝐴 ) | |
| 8 | 6 7 | sylbi | ⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } = suc 𝐴 ) |
| 9 | 5 8 | eqtr2d | ⊢ ( 𝐴 ∈ On → suc 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } ) |