This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a singleton. Theorem 15.17(v) of Monk1 p. 112. (Contributed by Mario Carneiro, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ranksnb | |- ( A e. U. ( R1 " On ) -> ( rank ` { A } ) = suc ( rank ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( y = A -> ( rank ` y ) = ( rank ` A ) ) |
|
| 2 | 1 | eleq1d | |- ( y = A -> ( ( rank ` y ) e. x <-> ( rank ` A ) e. x ) ) |
| 3 | 2 | ralsng | |- ( A e. U. ( R1 " On ) -> ( A. y e. { A } ( rank ` y ) e. x <-> ( rank ` A ) e. x ) ) |
| 4 | 3 | rabbidv | |- ( A e. U. ( R1 " On ) -> { x e. On | A. y e. { A } ( rank ` y ) e. x } = { x e. On | ( rank ` A ) e. x } ) |
| 5 | 4 | inteqd | |- ( A e. U. ( R1 " On ) -> |^| { x e. On | A. y e. { A } ( rank ` y ) e. x } = |^| { x e. On | ( rank ` A ) e. x } ) |
| 6 | snwf | |- ( A e. U. ( R1 " On ) -> { A } e. U. ( R1 " On ) ) |
|
| 7 | rankval3b | |- ( { A } e. U. ( R1 " On ) -> ( rank ` { A } ) = |^| { x e. On | A. y e. { A } ( rank ` y ) e. x } ) |
|
| 8 | 6 7 | syl | |- ( A e. U. ( R1 " On ) -> ( rank ` { A } ) = |^| { x e. On | A. y e. { A } ( rank ` y ) e. x } ) |
| 9 | rankon | |- ( rank ` A ) e. On |
|
| 10 | onsucmin | |- ( ( rank ` A ) e. On -> suc ( rank ` A ) = |^| { x e. On | ( rank ` A ) e. x } ) |
|
| 11 | 9 10 | mp1i | |- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) = |^| { x e. On | ( rank ` A ) e. x } ) |
| 12 | 5 8 11 | 3eqtr4d | |- ( A e. U. ( R1 " On ) -> ( rank ` { A } ) = suc ( rank ` A ) ) |