This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankc1 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ( rank ‘ 𝐴 ) = ( rank ‘ ∪ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | rankuniss | ⊢ ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) |
| 3 | 2 | biantru | ⊢ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ∧ ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) ) |
| 4 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) | |
| 5 | 1 | rankval4 | ⊢ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| 6 | 5 | sseq1i | ⊢ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 7 | rankon | ⊢ ( rank ‘ 𝑥 ) ∈ On | |
| 8 | rankon | ⊢ ( rank ‘ ∪ 𝐴 ) ∈ On | |
| 9 | 7 8 | onsucssi | ⊢ ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 11 | 4 6 10 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 12 | eqss | ⊢ ( ( rank ‘ 𝐴 ) = ( rank ‘ ∪ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ∧ ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) ) | |
| 13 | 3 11 12 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ( rank ‘ 𝐴 ) = ( rank ‘ ∪ 𝐴 ) ) |