This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | |- A e. _V |
|
| Assertion | rankc1 | |- ( A. x e. A ( rank ` x ) e. ( rank ` U. A ) <-> ( rank ` A ) = ( rank ` U. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | |- A e. _V |
|
| 2 | 1 | rankuniss | |- ( rank ` U. A ) C_ ( rank ` A ) |
| 3 | 2 | biantru | |- ( ( rank ` A ) C_ ( rank ` U. A ) <-> ( ( rank ` A ) C_ ( rank ` U. A ) /\ ( rank ` U. A ) C_ ( rank ` A ) ) ) |
| 4 | iunss | |- ( U_ x e. A suc ( rank ` x ) C_ ( rank ` U. A ) <-> A. x e. A suc ( rank ` x ) C_ ( rank ` U. A ) ) |
|
| 5 | 1 | rankval4 | |- ( rank ` A ) = U_ x e. A suc ( rank ` x ) |
| 6 | 5 | sseq1i | |- ( ( rank ` A ) C_ ( rank ` U. A ) <-> U_ x e. A suc ( rank ` x ) C_ ( rank ` U. A ) ) |
| 7 | rankon | |- ( rank ` x ) e. On |
|
| 8 | rankon | |- ( rank ` U. A ) e. On |
|
| 9 | 7 8 | onsucssi | |- ( ( rank ` x ) e. ( rank ` U. A ) <-> suc ( rank ` x ) C_ ( rank ` U. A ) ) |
| 10 | 9 | ralbii | |- ( A. x e. A ( rank ` x ) e. ( rank ` U. A ) <-> A. x e. A suc ( rank ` x ) C_ ( rank ` U. A ) ) |
| 11 | 4 6 10 | 3bitr4ri | |- ( A. x e. A ( rank ` x ) e. ( rank ` U. A ) <-> ( rank ` A ) C_ ( rank ` U. A ) ) |
| 12 | eqss | |- ( ( rank ` A ) = ( rank ` U. A ) <-> ( ( rank ` A ) C_ ( rank ` U. A ) /\ ( rank ` U. A ) C_ ( rank ` A ) ) ) |
|
| 13 | 3 11 12 | 3bitr4i | |- ( A. x e. A ( rank ` x ) e. ( rank ` U. A ) <-> ( rank ` A ) = ( rank ` U. A ) ) |