This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankc2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ 𝐴 ) = suc ( rank ‘ ∪ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| 2 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 3 | 1 | uniex | ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | pwex | ⊢ 𝒫 ∪ 𝐴 ∈ V |
| 5 | 4 | rankss | ⊢ ( 𝐴 ⊆ 𝒫 ∪ 𝐴 → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝒫 ∪ 𝐴 ) ) |
| 6 | 2 5 | ax-mp | ⊢ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝒫 ∪ 𝐴 ) |
| 7 | 3 | rankpw | ⊢ ( rank ‘ 𝒫 ∪ 𝐴 ) = suc ( rank ‘ ∪ 𝐴 ) |
| 8 | 6 7 | sseqtri | ⊢ ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ ∪ 𝐴 ) |
| 9 | 8 | a1i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ ∪ 𝐴 ) ) |
| 10 | 1 | rankel | ⊢ ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) |
| 11 | eleq1 | ⊢ ( ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) ) | |
| 12 | 10 11 | syl5ibcom | ⊢ ( 𝑥 ∈ 𝐴 → ( ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 13 | 12 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) |
| 14 | rankon | ⊢ ( rank ‘ ∪ 𝐴 ) ∈ On | |
| 15 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 16 | 14 15 | onsucssi | ⊢ ( ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 17 | 13 16 | sylib | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → suc ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 18 | 9 17 | eqssd | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ 𝐴 ) = suc ( rank ‘ ∪ 𝐴 ) ) |