This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of ralxp with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxpf.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| ralxpf.2 | ⊢ Ⅎ 𝑧 𝜑 | ||
| ralxpf.3 | ⊢ Ⅎ 𝑥 𝜓 | ||
| ralxpf.4 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ralxpf | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxpf.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | ralxpf.2 | ⊢ Ⅎ 𝑧 𝜑 | |
| 3 | ralxpf.3 | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | ralxpf.4 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | cbvralsvw | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) [ 𝑤 / 𝑥 ] 𝜑 ) | |
| 6 | cbvralsvw | ⊢ ( ∀ 𝑧 ∈ 𝐵 [ 𝑢 / 𝑦 ] 𝜓 ↔ ∀ 𝑣 ∈ 𝐵 [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) | |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 [ 𝑢 / 𝑦 ] 𝜓 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 8 | nfv | ⊢ Ⅎ 𝑢 ∀ 𝑧 ∈ 𝐵 𝜓 | |
| 9 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 10 | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑢 / 𝑦 ] 𝜓 | |
| 11 | 9 10 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑧 ∈ 𝐵 [ 𝑢 / 𝑦 ] 𝜓 |
| 12 | sbequ12 | ⊢ ( 𝑦 = 𝑢 → ( 𝜓 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) | |
| 13 | 12 | ralbidv | ⊢ ( 𝑦 = 𝑢 → ( ∀ 𝑧 ∈ 𝐵 𝜓 ↔ ∀ 𝑧 ∈ 𝐵 [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 14 | 8 11 13 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 [ 𝑢 / 𝑦 ] 𝜓 ) |
| 15 | vex | ⊢ 𝑢 ∈ V | |
| 16 | vex | ⊢ 𝑣 ∈ V | |
| 17 | 15 16 | eqvinop | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 = 〈 𝑢 , 𝑣 〉 ) ) |
| 18 | 1 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 |
| 19 | 10 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 |
| 20 | 18 19 | nfbi | ⊢ Ⅎ 𝑦 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 21 | 2 | nfsbv | ⊢ Ⅎ 𝑧 [ 𝑤 / 𝑥 ] 𝜑 |
| 22 | nfs1v | ⊢ Ⅎ 𝑧 [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 | |
| 23 | 21 22 | nfbi | ⊢ Ⅎ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 24 | 3 4 | sbhypf | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 25 | vex | ⊢ 𝑦 ∈ V | |
| 26 | vex | ⊢ 𝑧 ∈ V | |
| 27 | 25 26 | opth | ⊢ ( 〈 𝑦 , 𝑧 〉 = 〈 𝑢 , 𝑣 〉 ↔ ( 𝑦 = 𝑢 ∧ 𝑧 = 𝑣 ) ) |
| 28 | sbequ12 | ⊢ ( 𝑧 = 𝑣 → ( [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) | |
| 29 | 12 28 | sylan9bb | ⊢ ( ( 𝑦 = 𝑢 ∧ 𝑧 = 𝑣 ) → ( 𝜓 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 30 | 27 29 | sylbi | ⊢ ( 〈 𝑦 , 𝑧 〉 = 〈 𝑢 , 𝑣 〉 → ( 𝜓 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 31 | 24 30 | sylan9bb | ⊢ ( ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 = 〈 𝑢 , 𝑣 〉 ) → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 32 | 23 31 | exlimi | ⊢ ( ∃ 𝑧 ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 = 〈 𝑢 , 𝑣 〉 ) → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 33 | 20 32 | exlimi | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 = 〈 𝑢 , 𝑣 〉 ) → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 34 | 17 33 | sylbi | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 35 | 34 | ralxp | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) [ 𝑤 / 𝑥 ] 𝜑 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 36 | 7 14 35 | 3bitr4ri | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) [ 𝑤 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ) |
| 37 | 5 36 | bitri | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ) |