This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of rexxp with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxpf.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| ralxpf.2 | ⊢ Ⅎ 𝑧 𝜑 | ||
| ralxpf.3 | ⊢ Ⅎ 𝑥 𝜓 | ||
| ralxpf.4 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rexxpf | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxpf.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | ralxpf.2 | ⊢ Ⅎ 𝑧 𝜑 | |
| 3 | ralxpf.3 | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | ralxpf.4 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | 1 | nfn | ⊢ Ⅎ 𝑦 ¬ 𝜑 |
| 6 | 2 | nfn | ⊢ Ⅎ 𝑧 ¬ 𝜑 |
| 7 | 3 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜓 |
| 8 | 4 | notbid | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 9 | 5 6 7 8 | ralxpf | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ) |
| 10 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) | |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| 12 | 9 11 | bitri | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| 13 | 12 | notbii | ⊢ ( ¬ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| 14 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ¬ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ) | |
| 15 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ) |