This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of ralxp with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxpf.1 | |- F/ y ph |
|
| ralxpf.2 | |- F/ z ph |
||
| ralxpf.3 | |- F/ x ps |
||
| ralxpf.4 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
||
| Assertion | ralxpf | |- ( A. x e. ( A X. B ) ph <-> A. y e. A A. z e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxpf.1 | |- F/ y ph |
|
| 2 | ralxpf.2 | |- F/ z ph |
|
| 3 | ralxpf.3 | |- F/ x ps |
|
| 4 | ralxpf.4 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| 5 | cbvralsvw | |- ( A. x e. ( A X. B ) ph <-> A. w e. ( A X. B ) [ w / x ] ph ) |
|
| 6 | cbvralsvw | |- ( A. z e. B [ u / y ] ps <-> A. v e. B [ v / z ] [ u / y ] ps ) |
|
| 7 | 6 | ralbii | |- ( A. u e. A A. z e. B [ u / y ] ps <-> A. u e. A A. v e. B [ v / z ] [ u / y ] ps ) |
| 8 | nfv | |- F/ u A. z e. B ps |
|
| 9 | nfcv | |- F/_ y B |
|
| 10 | nfs1v | |- F/ y [ u / y ] ps |
|
| 11 | 9 10 | nfralw | |- F/ y A. z e. B [ u / y ] ps |
| 12 | sbequ12 | |- ( y = u -> ( ps <-> [ u / y ] ps ) ) |
|
| 13 | 12 | ralbidv | |- ( y = u -> ( A. z e. B ps <-> A. z e. B [ u / y ] ps ) ) |
| 14 | 8 11 13 | cbvralw | |- ( A. y e. A A. z e. B ps <-> A. u e. A A. z e. B [ u / y ] ps ) |
| 15 | vex | |- u e. _V |
|
| 16 | vex | |- v e. _V |
|
| 17 | 15 16 | eqvinop | |- ( w = <. u , v >. <-> E. y E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) ) |
| 18 | 1 | nfsbv | |- F/ y [ w / x ] ph |
| 19 | 10 | nfsbv | |- F/ y [ v / z ] [ u / y ] ps |
| 20 | 18 19 | nfbi | |- F/ y ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) |
| 21 | 2 | nfsbv | |- F/ z [ w / x ] ph |
| 22 | nfs1v | |- F/ z [ v / z ] [ u / y ] ps |
|
| 23 | 21 22 | nfbi | |- F/ z ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) |
| 24 | 3 4 | sbhypf | |- ( w = <. y , z >. -> ( [ w / x ] ph <-> ps ) ) |
| 25 | vex | |- y e. _V |
|
| 26 | vex | |- z e. _V |
|
| 27 | 25 26 | opth | |- ( <. y , z >. = <. u , v >. <-> ( y = u /\ z = v ) ) |
| 28 | sbequ12 | |- ( z = v -> ( [ u / y ] ps <-> [ v / z ] [ u / y ] ps ) ) |
|
| 29 | 12 28 | sylan9bb | |- ( ( y = u /\ z = v ) -> ( ps <-> [ v / z ] [ u / y ] ps ) ) |
| 30 | 27 29 | sylbi | |- ( <. y , z >. = <. u , v >. -> ( ps <-> [ v / z ] [ u / y ] ps ) ) |
| 31 | 24 30 | sylan9bb | |- ( ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 32 | 23 31 | exlimi | |- ( E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 33 | 20 32 | exlimi | |- ( E. y E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 34 | 17 33 | sylbi | |- ( w = <. u , v >. -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 35 | 34 | ralxp | |- ( A. w e. ( A X. B ) [ w / x ] ph <-> A. u e. A A. v e. B [ v / z ] [ u / y ] ps ) |
| 36 | 7 14 35 | 3bitr4ri | |- ( A. w e. ( A X. B ) [ w / x ] ph <-> A. y e. A A. z e. B ps ) |
| 37 | 5 36 | bitri | |- ( A. x e. ( A X. B ) ph <-> A. y e. A A. z e. B ps ) |