This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted universal quantifiers. For a version based on fewer axioms see ralcom . (Contributed by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralcomf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| ralcomf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | ralcomf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcomf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | ralcomf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | ancomst | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) | |
| 4 | 3 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
| 5 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
| 7 | 1 | r2alf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |
| 8 | 2 | r2alf | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |