This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted universal quantification. For a version based on fewer axioms see r2al . (Contributed by Mario Carneiro, 14-Oct-2016) Use r2allem . (Revised by Wolf Lammen, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r2alf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| Assertion | r2alf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2alf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 3 | 2 | 19.21 | ⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 4 | 3 | r2allem | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |