This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction after substituting an expression A (containing y ) for x in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabxfr.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| rabxfr.2 | ⊢ Ⅎ 𝑦 𝐶 | ||
| rabxfr.3 | ⊢ ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) | ||
| rabxfr.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| rabxfr.5 | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | ||
| Assertion | rabxfr | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜓 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabxfr.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| 2 | rabxfr.2 | ⊢ Ⅎ 𝑦 𝐶 | |
| 3 | rabxfr.3 | ⊢ ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) | |
| 4 | rabxfr.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | rabxfr.5 | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | |
| 6 | tru | ⊢ ⊤ | |
| 7 | 3 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
| 8 | 1 2 7 4 5 | rabxfrd | ⊢ ( ( ⊤ ∧ 𝐵 ∈ 𝐷 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜓 } ) ) |
| 9 | 6 8 | mpan | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜓 } ) ) |