This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction after substituting an expression A (containing y ) for x in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabxfrd.1 | |- F/_ y B |
|
| rabxfrd.2 | |- F/_ y C |
||
| rabxfrd.3 | |- ( ( ph /\ y e. D ) -> A e. D ) |
||
| rabxfrd.4 | |- ( x = A -> ( ps <-> ch ) ) |
||
| rabxfrd.5 | |- ( y = B -> A = C ) |
||
| Assertion | rabxfrd | |- ( ( ph /\ B e. D ) -> ( C e. { x e. D | ps } <-> B e. { y e. D | ch } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabxfrd.1 | |- F/_ y B |
|
| 2 | rabxfrd.2 | |- F/_ y C |
|
| 3 | rabxfrd.3 | |- ( ( ph /\ y e. D ) -> A e. D ) |
|
| 4 | rabxfrd.4 | |- ( x = A -> ( ps <-> ch ) ) |
|
| 5 | rabxfrd.5 | |- ( y = B -> A = C ) |
|
| 6 | 3 | ex | |- ( ph -> ( y e. D -> A e. D ) ) |
| 7 | ibibr | |- ( ( y e. D -> A e. D ) <-> ( y e. D -> ( A e. D <-> y e. D ) ) ) |
|
| 8 | 6 7 | sylib | |- ( ph -> ( y e. D -> ( A e. D <-> y e. D ) ) ) |
| 9 | 8 | imp | |- ( ( ph /\ y e. D ) -> ( A e. D <-> y e. D ) ) |
| 10 | 9 | anbi1d | |- ( ( ph /\ y e. D ) -> ( ( A e. D /\ ch ) <-> ( y e. D /\ ch ) ) ) |
| 11 | 4 | elrab | |- ( A e. { x e. D | ps } <-> ( A e. D /\ ch ) ) |
| 12 | rabid | |- ( y e. { y e. D | ch } <-> ( y e. D /\ ch ) ) |
|
| 13 | 10 11 12 | 3bitr4g | |- ( ( ph /\ y e. D ) -> ( A e. { x e. D | ps } <-> y e. { y e. D | ch } ) ) |
| 14 | 13 | rabbidva | |- ( ph -> { y e. D | A e. { x e. D | ps } } = { y e. D | y e. { y e. D | ch } } ) |
| 15 | 14 | eleq2d | |- ( ph -> ( B e. { y e. D | A e. { x e. D | ps } } <-> B e. { y e. D | y e. { y e. D | ch } } ) ) |
| 16 | nfcv | |- F/_ y D |
|
| 17 | 2 | nfel1 | |- F/ y C e. { x e. D | ps } |
| 18 | 5 | eleq1d | |- ( y = B -> ( A e. { x e. D | ps } <-> C e. { x e. D | ps } ) ) |
| 19 | 1 16 17 18 | elrabf | |- ( B e. { y e. D | A e. { x e. D | ps } } <-> ( B e. D /\ C e. { x e. D | ps } ) ) |
| 20 | nfrab1 | |- F/_ y { y e. D | ch } |
|
| 21 | 1 20 | nfel | |- F/ y B e. { y e. D | ch } |
| 22 | eleq1 | |- ( y = B -> ( y e. { y e. D | ch } <-> B e. { y e. D | ch } ) ) |
|
| 23 | 1 16 21 22 | elrabf | |- ( B e. { y e. D | y e. { y e. D | ch } } <-> ( B e. D /\ B e. { y e. D | ch } ) ) |
| 24 | 15 19 23 | 3bitr3g | |- ( ph -> ( ( B e. D /\ C e. { x e. D | ps } ) <-> ( B e. D /\ B e. { y e. D | ch } ) ) ) |
| 25 | pm5.32 | |- ( ( B e. D -> ( C e. { x e. D | ps } <-> B e. { y e. D | ch } ) ) <-> ( ( B e. D /\ C e. { x e. D | ps } ) <-> ( B e. D /\ B e. { y e. D | ch } ) ) ) |
|
| 26 | 24 25 | sylibr | |- ( ph -> ( B e. D -> ( C e. { x e. D | ps } <-> B e. { y e. D | ch } ) ) ) |
| 27 | 26 | imp | |- ( ( ph /\ B e. D ) -> ( C e. { x e. D | ps } <-> B e. { y e. D | ch } ) ) |