This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.43 for a triple disjunction . (Contributed by AV, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
| 3 | r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) | |
| 4 | r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 5 | 4 | orbi1i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 6 | df-3or | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 8 | 2 3 7 | 3bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ∨ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |