This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003) (Proof shortened by Wolf Lammen, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.5 | ⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) ↔ 𝜓 ) ) | |
| 2 | 1 | ralrexbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 3 | 2 | biimpcd | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 4 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 5 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
| 6 | 5 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 7 | 4 6 | sylbir | ⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 8 | ax-1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) | |
| 9 | 8 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 10 | 7 9 | ja | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 11 | 3 10 | impbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |