This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecqusaddd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) | |
| ecqusaddd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| ecqusaddd.g | ⊢ ∼ = ( 𝑅 ~QG 𝐼 ) | ||
| ecqusaddd.q | ⊢ 𝑄 = ( 𝑅 /s ∼ ) | ||
| Assertion | ecqusaddd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqusaddd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) | |
| 2 | ecqusaddd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | ecqusaddd.g | ⊢ ∼ = ( 𝑅 ~QG 𝐼 ) | |
| 4 | ecqusaddd.q | ⊢ 𝑄 = ( 𝑅 /s ∼ ) | |
| 5 | 1 | anim1i | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) |
| 8 | 3 | oveq2i | ⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 9 | 4 8 | eqtri | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 10 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) | |
| 12 | 9 2 10 11 | qusadd | ⊢ ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 13 | 7 12 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 14 | 3 | eceq2i | ⊢ [ 𝐴 ] ∼ = [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) |
| 15 | 3 | eceq2i | ⊢ [ 𝐶 ] ∼ = [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) |
| 16 | 14 15 | oveq12i | ⊢ ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) = ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) |
| 17 | 3 | eceq2i | ⊢ [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) |
| 18 | 13 16 17 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |