This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| qusinv.v | |- V = ( Base ` G ) |
||
| qussub.p | |- .- = ( -g ` G ) |
||
| qussub.a | |- N = ( -g ` H ) |
||
| Assertion | qussub | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = [ ( X .- Y ) ] ( G ~QG S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| 2 | qusinv.v | |- V = ( Base ` G ) |
|
| 3 | qussub.p | |- .- = ( -g ` G ) |
|
| 4 | qussub.a | |- N = ( -g ` H ) |
|
| 5 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 6 | 1 2 5 | quseccl | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) ) |
| 7 | 6 | 3adant3 | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) ) |
| 8 | 1 2 5 | quseccl | |- ( ( S e. ( NrmSGrp ` G ) /\ Y e. V ) -> [ Y ] ( G ~QG S ) e. ( Base ` H ) ) |
| 9 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 10 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 11 | 5 9 10 4 | grpsubval | |- ( ( [ X ] ( G ~QG S ) e. ( Base ` H ) /\ [ Y ] ( G ~QG S ) e. ( Base ` H ) ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = ( [ X ] ( G ~QG S ) ( +g ` H ) ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) ) ) |
| 12 | 7 8 11 | 3imp3i2an | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = ( [ X ] ( G ~QG S ) ( +g ` H ) ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) ) ) |
| 13 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 14 | 1 2 13 10 | qusinv | |- ( ( S e. ( NrmSGrp ` G ) /\ Y e. V ) -> ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) = [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) |
| 15 | 14 | 3adant2 | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) = [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) |
| 16 | 15 | oveq2d | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) ) = ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) ) |
| 17 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 18 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 19 | 17 18 | syl | |- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 20 | 2 13 | grpinvcl | |- ( ( G e. Grp /\ Y e. V ) -> ( ( invg ` G ) ` Y ) e. V ) |
| 21 | 19 20 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ Y e. V ) -> ( ( invg ` G ) ` Y ) e. V ) |
| 22 | 21 | 3adant2 | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( ( invg ` G ) ` Y ) e. V ) |
| 23 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 24 | 1 2 23 9 | qusadd | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ ( ( invg ` G ) ` Y ) e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ] ( G ~QG S ) ) |
| 25 | 22 24 | syld3an3 | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ] ( G ~QG S ) ) |
| 26 | 2 23 13 3 | grpsubval | |- ( ( X e. V /\ Y e. V ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 27 | 26 | 3adant1 | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 28 | 27 | eceq1d | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> [ ( X .- Y ) ] ( G ~QG S ) = [ ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ] ( G ~QG S ) ) |
| 29 | 25 28 | eqtr4d | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) = [ ( X .- Y ) ] ( G ~QG S ) ) |
| 30 | 12 16 29 | 3eqtrd | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = [ ( X .- Y ) ] ( G ~QG S ) ) |