This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng . Similar to qusmul2idl . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 28-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmulrng.e | |- .~ = ( R ~QG S ) |
|
| qusmulrng.h | |- H = ( R /s .~ ) |
||
| qusmulrng.b | |- B = ( Base ` R ) |
||
| qusmulrng.p | |- .x. = ( .r ` R ) |
||
| qusmulrng.a | |- .xb = ( .r ` H ) |
||
| Assertion | qusmulrng | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( X e. B /\ Y e. B ) ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmulrng.e | |- .~ = ( R ~QG S ) |
|
| 2 | qusmulrng.h | |- H = ( R /s .~ ) |
|
| 3 | qusmulrng.b | |- B = ( Base ` R ) |
|
| 4 | qusmulrng.p | |- .x. = ( .r ` R ) |
|
| 5 | qusmulrng.a | |- .xb = ( .r ` H ) |
|
| 6 | 2 | a1i | |- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> H = ( R /s .~ ) ) |
| 7 | 3 | a1i | |- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> B = ( Base ` R ) ) |
| 8 | 3 1 | eqger | |- ( S e. ( SubGrp ` R ) -> .~ Er B ) |
| 9 | 8 | 3ad2ant3 | |- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> .~ Er B ) |
| 10 | simp1 | |- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> R e. Rng ) |
|
| 11 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
| 12 | 3 1 11 4 | 2idlcpblrng | |- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> ( ( a .~ b /\ c .~ d ) -> ( a .x. c ) .~ ( b .x. d ) ) ) |
| 13 | 10 | anim1i | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( R e. Rng /\ ( b e. B /\ d e. B ) ) ) |
| 14 | 3anass | |- ( ( R e. Rng /\ b e. B /\ d e. B ) <-> ( R e. Rng /\ ( b e. B /\ d e. B ) ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( R e. Rng /\ b e. B /\ d e. B ) ) |
| 16 | 3 4 | rngcl | |- ( ( R e. Rng /\ b e. B /\ d e. B ) -> ( b .x. d ) e. B ) |
| 17 | 15 16 | syl | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( b .x. d ) e. B ) |
| 18 | 6 7 9 10 12 17 4 5 | qusmulval | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ X e. B /\ Y e. B ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |
| 19 | 18 | 3expb | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( X e. B /\ Y e. B ) ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |