This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac ? (Contributed by NM, 16-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intfrac2.1 | ⊢ 𝑍 = ( ⌊ ‘ 𝐴 ) | |
| intfrac2.2 | ⊢ 𝐹 = ( 𝐴 − 𝑍 ) | ||
| Assertion | intfrac2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = ( 𝑍 + 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intfrac2.1 | ⊢ 𝑍 = ( ⌊ ‘ 𝐴 ) | |
| 2 | intfrac2.2 | ⊢ 𝐹 = ( 𝐴 − 𝑍 ) | |
| 3 | fracge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) ) | |
| 4 | 1 | oveq2i | ⊢ ( 𝐴 − 𝑍 ) = ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) |
| 5 | 2 4 | eqtri | ⊢ 𝐹 = ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) |
| 6 | 3 5 | breqtrrdi | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ 𝐹 ) |
| 7 | fraclt1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) < 1 ) | |
| 8 | 5 7 | eqbrtrid | ⊢ ( 𝐴 ∈ ℝ → 𝐹 < 1 ) |
| 9 | 2 | oveq2i | ⊢ ( 𝑍 + 𝐹 ) = ( 𝑍 + ( 𝐴 − 𝑍 ) ) |
| 10 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 11 | 1 10 | eqeltrid | ⊢ ( 𝐴 ∈ ℝ → 𝑍 ∈ ℤ ) |
| 12 | 11 | zcnd | ⊢ ( 𝐴 ∈ ℝ → 𝑍 ∈ ℂ ) |
| 13 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 14 | 12 13 | pncan3d | ⊢ ( 𝐴 ∈ ℝ → ( 𝑍 + ( 𝐴 − 𝑍 ) ) = 𝐴 ) |
| 15 | 9 14 | eqtr2id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 = ( 𝑍 + 𝐹 ) ) |
| 16 | 6 8 15 | 3jca | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = ( 𝑍 + 𝐹 ) ) ) |