This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0nndivcl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 𝐾 / 𝐿 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnnne0 | ⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≠ 0 ) ) | |
| 2 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≠ 0 ) ) → 𝐾 ∈ ℝ ) |
| 4 | nn0re | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) | |
| 5 | 4 | ad2antrl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≠ 0 ) ) → 𝐿 ∈ ℝ ) |
| 6 | simprr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≠ 0 ) ) → 𝐿 ≠ 0 ) | |
| 7 | 3 5 6 | 3jca | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≠ 0 ) ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝐿 ≠ 0 ) ) |
| 8 | 1 7 | sylan2b | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝐿 ≠ 0 ) ) |
| 9 | redivcl | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝐿 ≠ 0 ) → ( 𝐾 / 𝐿 ) ∈ ℝ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 𝐾 / 𝐿 ) ∈ ℝ ) |