This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that F be a function with domain X . (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | |- X = U. J |
|
| Assertion | qtopres | |- ( F e. V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | |- X = U. J |
|
| 2 | resima | |- ( ( F |` X ) " X ) = ( F " X ) |
|
| 3 | 2 | pweqi | |- ~P ( ( F |` X ) " X ) = ~P ( F " X ) |
| 4 | 3 | rabeqi | |- { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } = { s e. ~P ( F " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } |
| 5 | residm | |- ( ( F |` X ) |` X ) = ( F |` X ) |
|
| 6 | 5 | cnveqi | |- `' ( ( F |` X ) |` X ) = `' ( F |` X ) |
| 7 | 6 | imaeq1i | |- ( `' ( ( F |` X ) |` X ) " s ) = ( `' ( F |` X ) " s ) |
| 8 | cnvresima | |- ( `' ( ( F |` X ) |` X ) " s ) = ( ( `' ( F |` X ) " s ) i^i X ) |
|
| 9 | cnvresima | |- ( `' ( F |` X ) " s ) = ( ( `' F " s ) i^i X ) |
|
| 10 | 7 8 9 | 3eqtr3i | |- ( ( `' ( F |` X ) " s ) i^i X ) = ( ( `' F " s ) i^i X ) |
| 11 | 10 | eleq1i | |- ( ( ( `' ( F |` X ) " s ) i^i X ) e. J <-> ( ( `' F " s ) i^i X ) e. J ) |
| 12 | 11 | rabbii | |- { s e. ~P ( F " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } |
| 13 | 4 12 | eqtr2i | |- { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } = { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } |
| 14 | 1 | qtopval | |- ( ( J e. _V /\ F e. V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| 15 | resexg | |- ( F e. V -> ( F |` X ) e. _V ) |
|
| 16 | 1 | qtopval | |- ( ( J e. _V /\ ( F |` X ) e. _V ) -> ( J qTop ( F |` X ) ) = { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } ) |
| 17 | 15 16 | sylan2 | |- ( ( J e. _V /\ F e. V ) -> ( J qTop ( F |` X ) ) = { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } ) |
| 18 | 13 14 17 | 3eqtr4a | |- ( ( J e. _V /\ F e. V ) -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |
| 19 | 18 | expcom | |- ( F e. V -> ( J e. _V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) ) |
| 20 | df-qtop | |- qTop = ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } ) |
|
| 21 | 20 | reldmmpo | |- Rel dom qTop |
| 22 | 21 | ovprc1 | |- ( -. J e. _V -> ( J qTop F ) = (/) ) |
| 23 | 21 | ovprc1 | |- ( -. J e. _V -> ( J qTop ( F |` X ) ) = (/) ) |
| 24 | 22 23 | eqtr4d | |- ( -. J e. _V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |
| 25 | 19 24 | pm2.61d1 | |- ( F e. V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |