This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the quotient topology given a function f and topology j on the domain of f . (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-qtop | ⊢ qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cqtop | ⊢ qTop | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | vs | ⊢ 𝑠 | |
| 5 | 3 | cv | ⊢ 𝑓 |
| 6 | 1 | cv | ⊢ 𝑗 |
| 7 | 6 | cuni | ⊢ ∪ 𝑗 |
| 8 | 5 7 | cima | ⊢ ( 𝑓 “ ∪ 𝑗 ) |
| 9 | 8 | cpw | ⊢ 𝒫 ( 𝑓 “ ∪ 𝑗 ) |
| 10 | 5 | ccnv | ⊢ ◡ 𝑓 |
| 11 | 4 | cv | ⊢ 𝑠 |
| 12 | 10 11 | cima | ⊢ ( ◡ 𝑓 “ 𝑠 ) |
| 13 | 12 7 | cin | ⊢ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) |
| 14 | 13 6 | wcel | ⊢ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 |
| 15 | 14 4 9 | crab | ⊢ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } |
| 16 | 1 3 2 2 15 | cmpo | ⊢ ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) |
| 17 | 0 16 | wceq | ⊢ qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) |