This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idqtop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 qTop ( I ↾ 𝑋 ) ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresid | ⊢ ◡ ( I ↾ 𝑋 ) = ( I ↾ 𝑋 ) | |
| 2 | 1 | imaeq1i | ⊢ ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) = ( ( I ↾ 𝑋 ) “ 𝑥 ) |
| 3 | resiima | ⊢ ( 𝑥 ⊆ 𝑋 → ( ( I ↾ 𝑋 ) “ 𝑥 ) = 𝑥 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( I ↾ 𝑋 ) “ 𝑥 ) = 𝑥 ) |
| 5 | 2 4 | eqtrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) = 𝑥 ) |
| 6 | 5 | eleq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽 ) ) |
| 7 | 6 | pm5.32da | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽 ) ) ) |
| 8 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
| 9 | f1ofo | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) | |
| 10 | 8 9 | mp1i | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) |
| 11 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 qTop ( I ↾ 𝑋 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 12 | 10 11 | mpdan | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 qTop ( I ↾ 𝑋 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 13 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) | |
| 14 | 13 | ex | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋 ) ) |
| 15 | 14 | pm4.71rd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽 ) ) ) |
| 16 | 7 12 15 | 3bitr4d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 qTop ( I ↾ 𝑋 ) ) ↔ 𝑥 ∈ 𝐽 ) ) |
| 17 | 16 | eqrdv | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 qTop ( I ↾ 𝑋 ) ) = 𝐽 ) |