This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopomap.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| qtopomap.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| qtopomap.6 | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) | ||
| qtopcmap.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) | ||
| Assertion | qtopcmap | ⊢ ( 𝜑 → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopomap.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 2 | qtopomap.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | qtopomap.6 | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) | |
| 4 | qtopcmap.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) | |
| 5 | qtopss | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) | |
| 6 | 2 1 3 5 | syl3anc | ⊢ ( 𝜑 → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |
| 7 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) | |
| 12 | 10 1 2 11 | syl3anc | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 13 | 12 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ∪ 𝐽 ) |
| 14 | df-fo | ⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌 ) ) | |
| 15 | 13 3 14 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | elqtop2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 18 | 8 15 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 19 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 20 | difss | ⊢ ( 𝑌 ∖ 𝑦 ) ⊆ 𝑌 | |
| 21 | foimacnv | ⊢ ( ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ∧ ( 𝑌 ∖ 𝑦 ) ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) = ( 𝑌 ∖ 𝑦 ) ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) = ( 𝑌 ∖ 𝑦 ) ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 24 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑌 = ∪ 𝐾 ) |
| 26 | 25 | difeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑌 ∖ 𝑦 ) = ( ∪ 𝐾 ∖ 𝑦 ) ) |
| 27 | 22 26 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) = ( ∪ 𝐾 ∖ 𝑦 ) ) |
| 28 | imaeq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) → ( ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ↔ ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 30 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 32 | fofun | ⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 → Fun 𝐹 ) | |
| 33 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 34 | imadif | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 35 | 19 32 33 34 | 4syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 36 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 37 | fimacnv | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
| 39 | 38 | difeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝑦 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 40 | 35 39 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 41 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 42 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 43 | 16 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 44 | 41 42 43 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 45 | 40 44 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 46 | 29 31 45 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝑦 ) ) ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 47 | 27 46 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ∪ 𝐾 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 48 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 49 | 23 48 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐾 ∈ Top ) |
| 50 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ⊆ 𝑌 ) | |
| 51 | 50 25 | sseqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ⊆ ∪ 𝐾 ) |
| 52 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 53 | 52 | isopn2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾 ) → ( 𝑦 ∈ 𝐾 ↔ ( ∪ 𝐾 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 54 | 49 51 53 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑦 ∈ 𝐾 ↔ ( ∪ 𝐾 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 55 | 47 54 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ∈ 𝐾 ) |
| 56 | 55 | ex | ⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → 𝑦 ∈ 𝐾 ) ) |
| 57 | 18 56 | sylbid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) → 𝑦 ∈ 𝐾 ) ) |
| 58 | 57 | ssrdv | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ⊆ 𝐾 ) |
| 59 | 6 58 | eqssd | ⊢ ( 𝜑 → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |