This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsdisj2 | ⊢ ( 𝑅 Er 𝑋 → Disj 𝑥 ∈ ( 𝐴 / 𝑅 ) 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑅 Er 𝑋 ) | |
| 2 | simprl | ⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑥 ∈ ( 𝐴 / 𝑅 ) ) | |
| 3 | simprr | ⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑦 ∈ ( 𝐴 / 𝑅 ) ) | |
| 4 | 1 2 3 | qsdisj | ⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 5 | 4 | ralrimivva | ⊢ ( 𝑅 Er 𝑋 → ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 6 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 7 | 6 | disjor | ⊢ ( Disj 𝑥 ∈ ( 𝐴 / 𝑅 ) 𝑥 ↔ ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 8 | 5 7 | sylibr | ⊢ ( 𝑅 Er 𝑋 → Disj 𝑥 ∈ ( 𝐴 / 𝑅 ) 𝑥 ) |