This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qmulcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | elq | ⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) | |
| 3 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑥 · 𝑧 ) ∈ ℤ ) | |
| 4 | nnmulcl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) | |
| 5 | 3 4 | anim12i | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ) ) |
| 6 | 5 | an4s | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ) ) |
| 7 | oveq12 | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 · 𝐵 ) = ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) | |
| 8 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 9 | zcn | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) | |
| 10 | 8 9 | anim12i | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 11 | 10 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 12 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 13 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 14 | 12 13 | jca | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 15 | nncn | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) | |
| 16 | nnne0 | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ≠ 0 ) | |
| 17 | 15 16 | jca | ⊢ ( 𝑤 ∈ ℕ → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) |
| 18 | 14 17 | anim12i | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) |
| 19 | 18 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) |
| 20 | divmuldiv | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) → ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) | |
| 21 | 11 19 20 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) |
| 22 | 7 21 | sylan9eqr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 · 𝐵 ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) |
| 23 | rspceov | ⊢ ( ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ∧ ( 𝐴 · 𝐵 ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) → ∃ 𝑣 ∈ ℤ ∃ 𝑢 ∈ ℕ ( 𝐴 · 𝐵 ) = ( 𝑣 / 𝑢 ) ) | |
| 24 | 23 | 3expa | ⊢ ( ( ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ) ∧ ( 𝐴 · 𝐵 ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) → ∃ 𝑣 ∈ ℤ ∃ 𝑢 ∈ ℕ ( 𝐴 · 𝐵 ) = ( 𝑣 / 𝑢 ) ) |
| 25 | elq | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℚ ↔ ∃ 𝑣 ∈ ℤ ∃ 𝑢 ∈ ℕ ( 𝐴 · 𝐵 ) = ( 𝑣 / 𝑢 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ) ∧ ( 𝐴 · 𝐵 ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) |
| 27 | 6 22 26 | syl2an2r | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) |
| 28 | 27 | an4s | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) |
| 29 | 28 | exp43 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) ) ) ) |
| 30 | 29 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) ) ) |
| 31 | 30 | rexlimdvv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) ) |
| 32 | 31 | imp | ⊢ ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) |
| 33 | 1 2 32 | syl2anb | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 · 𝐵 ) ∈ ℚ ) |