This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgrp.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsinvg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsinvg.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | ||
| pwsinvg.n | ⊢ 𝑁 = ( invg ‘ 𝑌 ) | ||
| Assertion | pwsinvg | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝑀 ∘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgrp.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsinvg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsinvg.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | |
| 4 | pwsinvg.n | ⊢ 𝑁 = ( invg ‘ 𝑌 ) | |
| 5 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 6 | simp2 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) | |
| 7 | fvexd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 8 | simp1 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) | |
| 9 | fconst6g | ⊢ ( 𝑅 ∈ Grp → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Grp ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Grp ) |
| 11 | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 12 | eqid | ⊢ ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 13 | simp3 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 15 | 1 14 | pwsval | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 18 | 2 17 | eqtrid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 19 | 13 18 | eleqtrd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 20 | 5 6 7 10 11 12 19 | prdsinvgd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 21 | fvconst2g | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) | |
| 22 | 8 21 | sylan | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( invg ‘ 𝑅 ) ) |
| 24 | 23 3 | eqtr4di | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = 𝑀 ) |
| 25 | 24 | fveq1d | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 26 | 25 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 27 | 20 26 | eqtrd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 28 | 16 | fveq2d | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( invg ‘ 𝑌 ) = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 29 | 4 28 | eqtrid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑁 = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 30 | 29 | fveq1d | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 32 | 1 31 2 8 6 13 | pwselbas | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 32 | feqmptd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑥 ) ) ) |
| 35 | 31 3 | grpinvf | ⊢ ( 𝑅 ∈ Grp → 𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 36 | 8 35 | syl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 37 | 36 | feqmptd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑀 = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑦 = ( 𝑋 ‘ 𝑥 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) | |
| 39 | 33 34 37 38 | fmptco | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ∘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 40 | 27 30 39 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝑀 ∘ 𝑋 ) ) |