This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brric | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ric | ⊢ ≃𝑟 = ( ◡ RingIso “ ( V ∖ 1o ) ) | |
| 2 | ovex | ⊢ ( 𝑟 RingHom 𝑠 ) ∈ V | |
| 3 | rabexg | ⊢ ( ( 𝑟 RingHom 𝑠 ) ∈ V → { ℎ ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ ℎ ∈ ( 𝑠 RingHom 𝑟 ) } ∈ V ) | |
| 4 | 2 3 | mp1i | ⊢ ( ( 𝑟 ∈ V ∧ 𝑠 ∈ V ) → { ℎ ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ ℎ ∈ ( 𝑠 RingHom 𝑟 ) } ∈ V ) |
| 5 | 4 | rgen2 | ⊢ ∀ 𝑟 ∈ V ∀ 𝑠 ∈ V { ℎ ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ ℎ ∈ ( 𝑠 RingHom 𝑟 ) } ∈ V |
| 6 | df-rim | ⊢ RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { ℎ ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ ℎ ∈ ( 𝑠 RingHom 𝑟 ) } ) | |
| 7 | 6 | fnmpo | ⊢ ( ∀ 𝑟 ∈ V ∀ 𝑠 ∈ V { ℎ ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ ℎ ∈ ( 𝑠 RingHom 𝑟 ) } ∈ V → RingIso Fn ( V × V ) ) |
| 8 | 5 7 | ax-mp | ⊢ RingIso Fn ( V × V ) |
| 9 | 1 8 | brwitnlem | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) |