This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of TakeutiZaring p. 87. (Contributed by NM, 29-Jan-2004) (Revised by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwen |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | ||
| 2 | 1 | brrelex1i | |
| 3 | pw2eng | ||
| 4 | 2 3 | syl | |
| 5 | 2onn | ||
| 6 | 5 | elexi | |
| 7 | 6 | enref | |
| 8 | mapen | ||
| 9 | 7 8 | mpan | |
| 10 | 1 | brrelex2i | |
| 11 | pw2eng | ||
| 12 | ensym | ||
| 13 | 10 11 12 | 3syl | |
| 14 | entr | ||
| 15 | 9 13 14 | syl2anc | |
| 16 | entr | ||
| 17 | 4 15 16 | syl2anc |