This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| psr0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | ||
| psr0.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| Assertion | psr0 | ⊢ ( 𝜑 → 0 = ( 𝐷 × { 𝑂 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 4 | psr0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | |
| 6 | psr0.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 9 | 1 2 3 4 5 7 | psr0cl | ⊢ ( 𝜑 → ( 𝐷 × { 𝑂 } ) ∈ ( Base ‘ 𝑆 ) ) |
| 10 | 1 2 3 4 5 7 8 9 | psr0lid | ⊢ ( 𝜑 → ( ( 𝐷 × { 𝑂 } ) ( +g ‘ 𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ) |
| 11 | 1 2 3 | psrgrp | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 12 | 7 8 6 | grpid | ⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐷 × { 𝑂 } ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐷 × { 𝑂 } ) ( +g ‘ 𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ↔ 0 = ( 𝐷 × { 𝑂 } ) ) ) |
| 13 | 11 9 12 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐷 × { 𝑂 } ) ( +g ‘ 𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ↔ 0 = ( 𝐷 × { 𝑂 } ) ) ) |
| 14 | 10 13 | mpbid | ⊢ ( 𝜑 → 0 = ( 𝐷 × { 𝑂 } ) ) |