This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | |- S = ( I mPwSer R ) |
|
| psrgrp.i | |- ( ph -> I e. V ) |
||
| psrgrp.r | |- ( ph -> R e. Grp ) |
||
| psrnegcl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psrnegcl.i | |- N = ( invg ` R ) |
||
| psrnegcl.b | |- B = ( Base ` S ) |
||
| psrnegcl.z | |- ( ph -> X e. B ) |
||
| psrlinv.o | |- .0. = ( 0g ` R ) |
||
| psrlinv.p | |- .+ = ( +g ` S ) |
||
| Assertion | psrlinv | |- ( ph -> ( ( N o. X ) .+ X ) = ( D X. { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | |- S = ( I mPwSer R ) |
|
| 2 | psrgrp.i | |- ( ph -> I e. V ) |
|
| 3 | psrgrp.r | |- ( ph -> R e. Grp ) |
|
| 4 | psrnegcl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psrnegcl.i | |- N = ( invg ` R ) |
|
| 6 | psrnegcl.b | |- B = ( Base ` S ) |
|
| 7 | psrnegcl.z | |- ( ph -> X e. B ) |
|
| 8 | psrlinv.o | |- .0. = ( 0g ` R ) |
|
| 9 | psrlinv.p | |- .+ = ( +g ` S ) |
|
| 10 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 11 | 4 10 | rabex2 | |- D e. _V |
| 12 | 11 | a1i | |- ( ph -> D e. _V ) |
| 13 | fvexd | |- ( ( ph /\ x e. D ) -> ( N ` ( X ` x ) ) e. _V ) |
|
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | 1 14 4 6 7 | psrelbas | |- ( ph -> X : D --> ( Base ` R ) ) |
| 16 | 15 | ffvelcdmda | |- ( ( ph /\ x e. D ) -> ( X ` x ) e. ( Base ` R ) ) |
| 17 | 15 | feqmptd | |- ( ph -> X = ( x e. D |-> ( X ` x ) ) ) |
| 18 | 14 5 3 | grpinvf1o | |- ( ph -> N : ( Base ` R ) -1-1-onto-> ( Base ` R ) ) |
| 19 | f1of | |- ( N : ( Base ` R ) -1-1-onto-> ( Base ` R ) -> N : ( Base ` R ) --> ( Base ` R ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> N : ( Base ` R ) --> ( Base ` R ) ) |
| 21 | 20 | feqmptd | |- ( ph -> N = ( y e. ( Base ` R ) |-> ( N ` y ) ) ) |
| 22 | fveq2 | |- ( y = ( X ` x ) -> ( N ` y ) = ( N ` ( X ` x ) ) ) |
|
| 23 | 16 17 21 22 | fmptco | |- ( ph -> ( N o. X ) = ( x e. D |-> ( N ` ( X ` x ) ) ) ) |
| 24 | 12 13 16 23 17 | offval2 | |- ( ph -> ( ( N o. X ) oF ( +g ` R ) X ) = ( x e. D |-> ( ( N ` ( X ` x ) ) ( +g ` R ) ( X ` x ) ) ) ) |
| 25 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 26 | 1 2 3 4 5 6 7 | psrnegcl | |- ( ph -> ( N o. X ) e. B ) |
| 27 | 1 6 25 9 26 7 | psradd | |- ( ph -> ( ( N o. X ) .+ X ) = ( ( N o. X ) oF ( +g ` R ) X ) ) |
| 28 | fconstmpt | |- ( D X. { .0. } ) = ( x e. D |-> .0. ) |
|
| 29 | 14 25 8 5 | grplinv | |- ( ( R e. Grp /\ ( X ` x ) e. ( Base ` R ) ) -> ( ( N ` ( X ` x ) ) ( +g ` R ) ( X ` x ) ) = .0. ) |
| 30 | 3 16 29 | syl2an2r | |- ( ( ph /\ x e. D ) -> ( ( N ` ( X ` x ) ) ( +g ` R ) ( X ` x ) ) = .0. ) |
| 31 | 30 | mpteq2dva | |- ( ph -> ( x e. D |-> ( ( N ` ( X ` x ) ) ( +g ` R ) ( X ` x ) ) ) = ( x e. D |-> .0. ) ) |
| 32 | 28 31 | eqtr4id | |- ( ph -> ( D X. { .0. } ) = ( x e. D |-> ( ( N ` ( X ` x ) ) ( +g ` R ) ( X ` x ) ) ) ) |
| 33 | 24 27 32 | 3eqtr4d | |- ( ph -> ( ( N o. X ) .+ X ) = ( D X. { .0. } ) ) |