This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrfval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| mvrfval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| mvrfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mvrfval.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mvrfval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrfval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) | ||
| Assertion | mvrfval | ⊢ ( 𝜑 → 𝑉 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 2 | mvrfval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 3 | mvrfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mvrfval.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mvrfval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mvrfval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) | |
| 7 | 5 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 8 | 6 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 9 | 5 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ∈ V ) |
| 10 | simpl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑖 = 𝐼 ) | |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 12 | 11 | rabeqdv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 13 | 12 2 | eqtr4di | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
| 14 | mpteq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ↔ 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) |
| 17 | simpr | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
| 19 | 18 4 | eqtr4di | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ 𝑟 ) = 1 ) |
| 20 | 17 | fveq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 21 | 20 3 | eqtr4di | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 22 | 16 19 21 | ifbieq12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) = if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) |
| 23 | 13 22 | mpteq12dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) |
| 24 | 10 23 | mpteq12dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| 25 | df-mvr | ⊢ mVar = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) | |
| 26 | 24 25 | ovmpoga | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ∧ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ∈ V ) → ( 𝐼 mVar 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| 27 | 7 8 9 26 | syl3anc | ⊢ ( 𝜑 → ( 𝐼 mVar 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| 28 | 1 27 | eqtrid | ⊢ ( 𝜑 → 𝑉 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |