This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnran.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| psgnran.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| Assertion | psgnran | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnran.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | psgnran.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 4 | 3 1 | sygbasnfpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 5 | 4 | ex | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 → dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
| 6 | 5 | pm4.71d | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 ↔ ( 𝑄 ∈ 𝑃 ∧ dom ( 𝑄 ∖ I ) ∈ Fin ) ) ) |
| 7 | 3 2 1 | psgneldm | ⊢ ( 𝑄 ∈ dom 𝑆 ↔ ( 𝑄 ∈ 𝑃 ∧ dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
| 8 | 6 7 | bitr4di | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆 ) ) |
| 9 | eqid | ⊢ ran ( pmTrsp ‘ 𝑁 ) = ran ( pmTrsp ‘ 𝑁 ) | |
| 10 | 3 9 2 | psgnvali | ⊢ ( 𝑄 ∈ dom 𝑆 → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑤 ) ∧ ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 11 | lencl | ⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) | |
| 12 | 11 | nn0zd | ⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) → ( ♯ ‘ 𝑤 ) ∈ ℤ ) |
| 13 | m1expcl2 | ⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { - 1 , 1 } ) | |
| 14 | prcom | ⊢ { - 1 , 1 } = { 1 , - 1 } | |
| 15 | 13 14 | eleqtrdi | ⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } ) |
| 16 | 12 15 | syl | ⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } ) |
| 18 | eleq1a | ⊢ ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } → ( ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
| 20 | 19 | adantld | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑤 ) ∧ ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
| 21 | 20 | rexlimdva | ⊢ ( 𝑁 ∈ Fin → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑤 ) ∧ ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
| 22 | 10 21 | syl5 | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
| 23 | 8 22 | sylbid | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |