This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfvalfi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnfvalfi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | sygbasnfpfi | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → dom ( 𝑃 ∖ I ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfvalfi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnfvalfi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | symgbasf | ⊢ ( 𝑃 ∈ 𝐵 → 𝑃 : 𝐷 ⟶ 𝐷 ) |
| 4 | 3 | ffnd | ⊢ ( 𝑃 ∈ 𝐵 → 𝑃 Fn 𝐷 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → 𝑃 Fn 𝐷 ) |
| 6 | fndifnfp | ⊢ ( 𝑃 Fn 𝐷 → dom ( 𝑃 ∖ I ) = { 𝑥 ∈ 𝐷 ∣ ( 𝑃 ‘ 𝑥 ) ≠ 𝑥 } ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → dom ( 𝑃 ∖ I ) = { 𝑥 ∈ 𝐷 ∣ ( 𝑃 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 8 | rabfi | ⊢ ( 𝐷 ∈ Fin → { 𝑥 ∈ 𝐷 ∣ ( 𝑃 ‘ 𝑥 ) ≠ 𝑥 } ∈ Fin ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → { 𝑥 ∈ 𝐷 ∣ ( 𝑃 ‘ 𝑥 ) ≠ 𝑥 } ∈ Fin ) |
| 10 | 7 9 | eqeltrd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → dom ( 𝑃 ∖ I ) ∈ Fin ) |