This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnran.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| psgnran.s | |- S = ( pmSgn ` N ) |
||
| Assertion | psgnran | |- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnran.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | psgnran.s | |- S = ( pmSgn ` N ) |
|
| 3 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 4 | 3 1 | sygbasnfpfi | |- ( ( N e. Fin /\ Q e. P ) -> dom ( Q \ _I ) e. Fin ) |
| 5 | 4 | ex | |- ( N e. Fin -> ( Q e. P -> dom ( Q \ _I ) e. Fin ) ) |
| 6 | 5 | pm4.71d | |- ( N e. Fin -> ( Q e. P <-> ( Q e. P /\ dom ( Q \ _I ) e. Fin ) ) ) |
| 7 | 3 2 1 | psgneldm | |- ( Q e. dom S <-> ( Q e. P /\ dom ( Q \ _I ) e. Fin ) ) |
| 8 | 6 7 | bitr4di | |- ( N e. Fin -> ( Q e. P <-> Q e. dom S ) ) |
| 9 | eqid | |- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
|
| 10 | 3 9 2 | psgnvali | |- ( Q e. dom S -> E. w e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum w ) /\ ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 11 | lencl | |- ( w e. Word ran ( pmTrsp ` N ) -> ( # ` w ) e. NN0 ) |
|
| 12 | 11 | nn0zd | |- ( w e. Word ran ( pmTrsp ` N ) -> ( # ` w ) e. ZZ ) |
| 13 | m1expcl2 | |- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. { -u 1 , 1 } ) |
|
| 14 | prcom | |- { -u 1 , 1 } = { 1 , -u 1 } |
|
| 15 | 13 14 | eleqtrdi | |- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } ) |
| 16 | 12 15 | syl | |- ( w e. Word ran ( pmTrsp ` N ) -> ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } ) |
| 17 | 16 | adantl | |- ( ( N e. Fin /\ w e. Word ran ( pmTrsp ` N ) ) -> ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } ) |
| 18 | eleq1a | |- ( ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } -> ( ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
|
| 19 | 17 18 | syl | |- ( ( N e. Fin /\ w e. Word ran ( pmTrsp ` N ) ) -> ( ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
| 20 | 19 | adantld | |- ( ( N e. Fin /\ w e. Word ran ( pmTrsp ` N ) ) -> ( ( Q = ( ( SymGrp ` N ) gsum w ) /\ ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
| 21 | 20 | rexlimdva | |- ( N e. Fin -> ( E. w e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum w ) /\ ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
| 22 | 10 21 | syl5 | |- ( N e. Fin -> ( Q e. dom S -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
| 23 | 8 22 | sylbid | |- ( N e. Fin -> ( Q e. P -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
| 24 | 23 | imp | |- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |