This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnprfval.0 | ⊢ 𝐷 = { 1 , 2 } | |
| psgnprfval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | ||
| psgnprfval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| psgnprfval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnprfval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnprfval1 | ⊢ ( 𝑁 ‘ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnprfval.0 | ⊢ 𝐷 = { 1 , 2 } | |
| 2 | psgnprfval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 3 | psgnprfval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | psgnprfval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 5 | psgnprfval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 6 | prex | ⊢ { 1 , 2 } ∈ V | |
| 7 | 1 6 | eqeltri | ⊢ 𝐷 ∈ V |
| 8 | 2 | symgid | ⊢ ( 𝐷 ∈ V → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 7 8 | ax-mp | ⊢ ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) |
| 10 | 9 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( I ↾ 𝐷 ) |
| 11 | reseq2 | ⊢ ( 𝐷 = { 1 , 2 } → ( I ↾ 𝐷 ) = ( I ↾ { 1 , 2 } ) ) | |
| 12 | 1ex | ⊢ 1 ∈ V | |
| 13 | 2nn | ⊢ 2 ∈ ℕ | |
| 14 | residpr | ⊢ ( ( 1 ∈ V ∧ 2 ∈ ℕ ) → ( I ↾ { 1 , 2 } ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( I ↾ { 1 , 2 } ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } |
| 16 | 11 15 | eqtrdi | ⊢ ( 𝐷 = { 1 , 2 } → ( I ↾ 𝐷 ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) |
| 17 | 1 16 | ax-mp | ⊢ ( I ↾ 𝐷 ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } |
| 18 | 10 17 | eqtr2i | ⊢ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } = ( 𝐺 Σg ∅ ) |
| 19 | 18 | fveq2i | ⊢ ( 𝑁 ‘ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) = ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) |
| 20 | wrd0 | ⊢ ∅ ∈ Word 𝑇 | |
| 21 | 2 4 5 | psgnvalii | ⊢ ( ( 𝐷 ∈ V ∧ ∅ ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) |
| 22 | 7 20 21 | mp2an | ⊢ ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) |
| 23 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 24 | 23 | oveq2i | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = ( - 1 ↑ 0 ) |
| 25 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 26 | exp0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) | |
| 27 | 25 26 | ax-mp | ⊢ ( - 1 ↑ 0 ) = 1 |
| 28 | 24 27 | eqtri | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 |
| 29 | 19 22 28 | 3eqtri | ⊢ ( 𝑁 ‘ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) = 1 |