This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnprfval.0 | |- D = { 1 , 2 } |
|
| psgnprfval.g | |- G = ( SymGrp ` D ) |
||
| psgnprfval.b | |- B = ( Base ` G ) |
||
| psgnprfval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnprfval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnprfval1 | |- ( N ` { <. 1 , 1 >. , <. 2 , 2 >. } ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnprfval.0 | |- D = { 1 , 2 } |
|
| 2 | psgnprfval.g | |- G = ( SymGrp ` D ) |
|
| 3 | psgnprfval.b | |- B = ( Base ` G ) |
|
| 4 | psgnprfval.t | |- T = ran ( pmTrsp ` D ) |
|
| 5 | psgnprfval.n | |- N = ( pmSgn ` D ) |
|
| 6 | prex | |- { 1 , 2 } e. _V |
|
| 7 | 1 6 | eqeltri | |- D e. _V |
| 8 | 2 | symgid | |- ( D e. _V -> ( _I |` D ) = ( 0g ` G ) ) |
| 9 | 7 8 | ax-mp | |- ( _I |` D ) = ( 0g ` G ) |
| 10 | 9 | gsum0 | |- ( G gsum (/) ) = ( _I |` D ) |
| 11 | reseq2 | |- ( D = { 1 , 2 } -> ( _I |` D ) = ( _I |` { 1 , 2 } ) ) |
|
| 12 | 1ex | |- 1 e. _V |
|
| 13 | 2nn | |- 2 e. NN |
|
| 14 | residpr | |- ( ( 1 e. _V /\ 2 e. NN ) -> ( _I |` { 1 , 2 } ) = { <. 1 , 1 >. , <. 2 , 2 >. } ) |
|
| 15 | 12 13 14 | mp2an | |- ( _I |` { 1 , 2 } ) = { <. 1 , 1 >. , <. 2 , 2 >. } |
| 16 | 11 15 | eqtrdi | |- ( D = { 1 , 2 } -> ( _I |` D ) = { <. 1 , 1 >. , <. 2 , 2 >. } ) |
| 17 | 1 16 | ax-mp | |- ( _I |` D ) = { <. 1 , 1 >. , <. 2 , 2 >. } |
| 18 | 10 17 | eqtr2i | |- { <. 1 , 1 >. , <. 2 , 2 >. } = ( G gsum (/) ) |
| 19 | 18 | fveq2i | |- ( N ` { <. 1 , 1 >. , <. 2 , 2 >. } ) = ( N ` ( G gsum (/) ) ) |
| 20 | wrd0 | |- (/) e. Word T |
|
| 21 | 2 4 5 | psgnvalii | |- ( ( D e. _V /\ (/) e. Word T ) -> ( N ` ( G gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) ) |
| 22 | 7 20 21 | mp2an | |- ( N ` ( G gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) |
| 23 | hash0 | |- ( # ` (/) ) = 0 |
|
| 24 | 23 | oveq2i | |- ( -u 1 ^ ( # ` (/) ) ) = ( -u 1 ^ 0 ) |
| 25 | neg1cn | |- -u 1 e. CC |
|
| 26 | exp0 | |- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
|
| 27 | 25 26 | ax-mp | |- ( -u 1 ^ 0 ) = 1 |
| 28 | 24 27 | eqtri | |- ( -u 1 ^ ( # ` (/) ) ) = 1 |
| 29 | 19 22 28 | 3eqtri | |- ( N ` { <. 1 , 1 >. , <. 2 , 2 >. } ) = 1 |