This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfitr.g | ⊢ 𝐺 = ( SymGrp ‘ 𝑁 ) | |
| psgnfitr.p | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| psgnfitr.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | psgnfitr | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝐵 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑄 = ( 𝐺 Σg 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfitr.g | ⊢ 𝐺 = ( SymGrp ‘ 𝑁 ) | |
| 2 | psgnfitr.p | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | psgnfitr.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝑁 ) | |
| 4 | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | 3 1 2 4 | symggen2 | ⊢ ( 𝑁 ∈ Fin → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 ) = 𝐵 ) |
| 6 | 1 | symggrp | ⊢ ( 𝑁 ∈ Fin → 𝐺 ∈ Grp ) |
| 7 | 6 | grpmndd | ⊢ ( 𝑁 ∈ Fin → 𝐺 ∈ Mnd ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 9 | 3 1 8 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 10 | 8 4 | gsumwspan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 ) = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 11 | 7 9 10 | sylancl | ⊢ ( 𝑁 ∈ Fin → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 ) = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 12 | 5 11 | eqtr3d | ⊢ ( 𝑁 ∈ Fin → 𝐵 = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 13 | 12 | eleq2d | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝐵 ↔ 𝑄 ∈ ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) ) |
| 14 | eqid | ⊢ ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) = ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) | |
| 15 | ovex | ⊢ ( 𝐺 Σg 𝑤 ) ∈ V | |
| 16 | 14 15 | elrnmpti | ⊢ ( 𝑄 ∈ ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 𝑄 = ( 𝐺 Σg 𝑤 ) ) |
| 17 | 13 16 | bitrdi | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝐵 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑄 = ( 𝐺 Σg 𝑤 ) ) ) |