This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfitr.g | |- G = ( SymGrp ` N ) |
|
| psgnfitr.p | |- B = ( Base ` G ) |
||
| psgnfitr.t | |- T = ran ( pmTrsp ` N ) |
||
| Assertion | psgnfitr | |- ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfitr.g | |- G = ( SymGrp ` N ) |
|
| 2 | psgnfitr.p | |- B = ( Base ` G ) |
|
| 3 | psgnfitr.t | |- T = ran ( pmTrsp ` N ) |
|
| 4 | eqid | |- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
|
| 5 | 3 1 2 4 | symggen2 | |- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = B ) |
| 6 | 1 | symggrp | |- ( N e. Fin -> G e. Grp ) |
| 7 | 6 | grpmndd | |- ( N e. Fin -> G e. Mnd ) |
| 8 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 9 | 3 1 8 | symgtrf | |- T C_ ( Base ` G ) |
| 10 | 8 4 | gsumwspan | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 11 | 7 9 10 | sylancl | |- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 12 | 5 11 | eqtr3d | |- ( N e. Fin -> B = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 13 | 12 | eleq2d | |- ( N e. Fin -> ( Q e. B <-> Q e. ran ( w e. Word T |-> ( G gsum w ) ) ) ) |
| 14 | eqid | |- ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) ) |
|
| 15 | ovex | |- ( G gsum w ) e. _V |
|
| 16 | 14 15 | elrnmpti | |- ( Q e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T Q = ( G gsum w ) ) |
| 17 | 13 16 | bitrdi | |- ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) ) |